Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
2.
bioRxiv ; 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36865244

ABSTRACT

In addition to reducing fracture risk, zoledronate has been found in some studies to decrease mortality in humans and extend lifespan and healthspan in animals. Because senescent cells accumulate with aging and contribute to multiple co-morbidities, the non-skeletal actions of zoledronate could be due to senolytic (killing of senescent cells) or senomorphic (inhibition of the secretion of the senescence-associated secretory phenotype [SASP]) actions. To test this, we first performed in vitro senescence assays using human lung fibroblasts and DNA repair-deficient mouse embryonic fibroblasts, which demonstrated that zoledronate killed senescent cells with minimal effects on non-senescent cells. Next, in aged mice treated with zoledronate or vehicle for 8 weeks, zoledronate significantly reduced circulating SASP factors, including CCL7, IL-1ß, TNFRSF1A, and TGFß1 and improved grip strength. Analysis of publicly available RNAseq data from CD115+ (CSF1R/c-fms+) pre-osteoclastic cells isolated from mice treated with zoledronate demonstrated a significant downregulation of senescence/SASP genes (SenMayo). To establish that these cells are potential senolytic/senomorphic targets of zoledronate, we used single cell proteomic analysis (cytometry by time of flight [CyTOF]) and demonstrated that zoledronate significantly reduced the number of pre-osteoclastic (CD115+/CD3e-/Ly6G-/CD45R-) cells and decreased protein levels of p16, p21, and SASP markers in these cells without affecting other immune cell populations. Collectively, our findings demonstrate that zoledronate has senolytic effects in vitro and modulates senescence/SASP biomarkers in vivo . These data point to the need for additional studies testing zoledronate and/or other bisphosphonate derivatives for senotherapeutic efficacy.

3.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768310

ABSTRACT

Osteomyelitis is a limb- and life-threatening orthopedic infection predominantly caused by Staphylococcus aureus biofilms. Bone infections are extremely challenging to treat clinically. Therefore, we have been designing, synthesizing, and testing novel antibiotic conjugates to target bone infections. This class of conjugates comprises bone-binding bisphosphonates as biochemical vectors for the delivery of antibiotic agents to bone minerals (hydroxyapatite). In the present study, we utilized a real-time impedance-based assay to study the growth of Staphylococcus aureus biofilms over time and to test the antimicrobial efficacy of our novel conjugates on the inhibition of biofilm growth in the presence and absence of hydroxyapatite. We tested early and newer generation quinolone antibiotics (ciprofloxacin, moxifloxacin, sitafloxacin, and nemonoxacin) and several bisphosphonate-conjugated versions of these antibiotics (bisphosphonate-carbamate-sitafloxacin (BCS), bisphosphonate-carbamate-nemonoxacin (BCN), etidronate-carbamate-ciprofloxacin (ECC), and etidronate-carbamate-moxifloxacin (ECX)) and found that they were able to inhibit Staphylococcus aureus biofilms in a dose-dependent manner. Among the conjugates, the greatest antimicrobial efficacy was observed for BCN with an MIC of 1.48 µg/mL. The conjugates demonstrated varying antimicrobial activity depending on the specific antibiotic used for conjugation, the type of bisphosphonate moiety, the chemical conjugation scheme, and the presence or absence of hydroxyapatite. The conjugates designed and tested in this study retained the bone-binding properties of the parent bisphosphonate moiety as confirmed using high-performance liquid chromatography. They also retained the antimicrobial activity of the parent antibiotic in the presence or absence of hydroxyapatite, albeit at lower levels due to the nature of their chemical modification. These findings will aid in the optimization and testing of this novel class of drugs for future applications to pharmacotherapy in osteomyelitis.


Subject(s)
Osteomyelitis , Staphylococcal Infections , Humans , Staphylococcus aureus , Diphosphonates/therapeutic use , Moxifloxacin , Etidronic Acid/therapeutic use , Electric Impedance , Anti-Bacterial Agents/chemistry , Staphylococcal Infections/drug therapy , Osteomyelitis/drug therapy , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Biofilms , Durapatite/chemistry , Microbial Sensitivity Tests
4.
Bone ; 156: 116289, 2022 03.
Article in English | MEDLINE | ID: mdl-34896359

ABSTRACT

The bisphosphonates ((HO)2P(O)CR1R2P(O)(OH)2, BPs) were first shown to inhibit bone resorption in the 1960s, but it was not until 30 years later that a detailed molecular understanding of the relationship between their varied chemical structures and biological activity was elucidated. In the 1990s and 2000s, several potent bisphosphonates containing nitrogen in their R2 side chains (N-BPs) were approved for clinical use including alendronate, risedronate, ibandronate, and zoledronate. These are now mostly generic drugs and remain the leading therapies for several major bone-related diseases, including osteoporosis and skeletal-related events associated with bone metastases. The early development of chemistry in this area was largely empirical and only a few common structural features related to strong binding to calcium phosphate were clear. Attempts to further develop structure-activity relationships to explain more dramatic pharmacological differences in vivo at first appeared inconclusive, and evidence for mechanisms underlying cellular effects on osteoclasts and macrophages only emerged after many years of research. The breakthrough came when the intracellular actions on the osteoclast were first shown for the simpler bisphosphonates, via the in vivo formation of P-C-P derivatives of ATP. The synthesis and biological evaluation of a large number of nitrogen-containing bisphosphonates in the 1980s and 1990s led to the key discovery that the antiresorptive effects of these more complex analogs on osteoclasts result mostly from their potency as inhibitors of the enzyme farnesyl diphosphate synthase (FDPS/FPPS). This key branch-point enzyme in the mevalonate pathway of cholesterol biosynthesis is important for the generation of isoprenoid lipids that are utilized for the post-translational modification of small GTP-binding proteins essential for osteoclast function. Since then, it has become even more clear that the overall pharmacological effects of individual bisphosphonates on bone depend upon two key properties: the affinity for bone mineral and inhibitory effects on biochemical targets within bone cells, in particular FDPS. Detailed enzyme-ligand crystal structure analysis began in the early 2000s and advances in our understanding of the structure-activity relationships, based on interactions with this target within the mevalonate pathway and related enzymes in osteoclasts and other cells have continued to be the focus of research efforts to this day. In addition, while many members of the bisphosphonate drug class share common properties, now it is more clear that chemical modifications to create variations in these properties may allow customization of BPs for different uses. Thus, as the appreciation for new potential opportunities with this drug class grows, new chemistry to allow ready access to an ever-widening variety of bisphosphonates continues to be developed. Potential new uses of the calcium phosphate binding mechanism of bisphosphonates for the targeting of other drugs to the skeleton, and effects discovered on other cellular targets, even at non-skeletal sites, continue to intrigue scientists in this research field.


Subject(s)
Bone Neoplasms , Diphosphonates , Bone Neoplasms/drug therapy , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Humans , Mevalonic Acid/metabolism , Nitrogen , Structure-Activity Relationship
6.
Bone ; 147: 115933, 2021 06.
Article in English | MEDLINE | ID: mdl-33757899

ABSTRACT

Studies of the potential role of bisphosphonates in dentistry date back to physical chemical research in the 1960s, and the genesis of the discovery of bisphosphonate pharmacology in part can be linked to some of this work. Since that time, parallel research on the effects of bisphosphonates on bone metabolism continued, while efforts in the dental field included studies of bisphosphonate effects on dental calculus, caries, and alveolar bone loss. While some utility of this drug class in the dental field was identified, leading to their experimental use in various dentrifice formulations and in some dental applications clinically, adverse effects of bisphosphonates in the jaws have also received attention. Most recently, certain bisphosphonates, particularly those with strong bone targeting properties, but limited biochemical effects (low potency bisphosphonates), are being studied as a local remedy for the concerns of adverse effects associated with other more potent members of this drug class. Additionally, low potency bisphosphonate analogs are under study as vectors to target active drugs to the mineral surfaces of the jawbones. These latter efforts have been devised for the prevention and treatment of oral problems, such as infections associated with oral surgery and implants. Advances in the utility and mechanistic understanding of the bisphosphonate class may enable additional oral therapeutic options for the management of multiple aspects of dental health.


Subject(s)
Bone Density Conservation Agents , Drug-Related Side Effects and Adverse Reactions , Bone and Bones , Dentistry , Diphosphonates/adverse effects , Humans
7.
Br J Pharmacol ; 178(9): 2008-2025, 2021 05.
Article in English | MEDLINE | ID: mdl-32876338

ABSTRACT

Advances in the design of potential bone-selective drugs for the treatment of various bone-related diseases are creating exciting new directions for multiple unmet medical needs. For bone-related cancers, off-target/non-bone toxicities with current drugs represent a significant barrier to the quality of life of affected patients. For bone infections and osteomyelitis, bacterial biofilms on infected bones limit the efficacy of antibiotics because it is hard to access the bacteria with current approaches. Promising new experimental approaches to therapy, based on bone-targeting of drugs, have been used in animal models of these conditions and demonstrate improved efficacy and safety. The success of these drug-design strategies bodes well for the development of therapies with improved efficacy for the treatment of diseases affecting the skeleton. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.


Subject(s)
Diphosphonates , Pharmaceutical Preparations , Animals , Bacteria , Biofilms , Humans , Quality of Life
8.
Bone ; 137: 115411, 2020 08.
Article in English | MEDLINE | ID: mdl-32437874

ABSTRACT

Alendronate was synthesized in 1970s in a search for inhibitors of calcification. Istituto Gentili investigators identified it as a potent inhibitor of bone resorption and obtained a patent covering its use in the treatment of osteoporosis and other disorders of excessive bone resorption in the 1980s. Merck licensed alendronate in 1988 and its pharmaceutical chemists reformulated it as a sodium salt with good solubility in a tablet that reduced its potential for esophageal irritation. Clinical trials proved that it reduced bone turnover, increased BMD and reduced the risk of vertebral fractures in postmenopausal osteoporotic women. Merck sponsored a large clinical trials that won FDA approval for treatment of osteoporosis in postmenopausal women and showed that it reduced the risk of spine and hip fractures. Its approval in the US in 1995 spurred sales of bone densitometers and BMD testing to screen for low bone mineral density and identify osteoporosis. Bone mass measurement was supported by medical society guidelines and reimbursement by Medicare and other insurers in the USA. A 70 mg weekly instead of 10 mg daily dose of alendronate produced the same effect on BMD and biochemical markers of bone remodelling with greater convenience and reduced potential for upper GI adverse events. Consequently, by 2006, about 30 million prescriptions for alendronate were written annually in the U.S. for about 15% of postmenopausal women in the U.S. Thereafter, publicity about rare but concerning atypical femoral fractures (AFF) and osteonecrosis of the jaw (ONJ) along with the expiry of Merck's patent (in 2008) and cessation of their promotion of alendronate, and a decline in use of densitometry led to a steady slide in its use even among patients for whom the benefits of alendronate far outweigh its potential risks. Nevertheless, in 25 years since its regulatory approval, alendronate has undoubtedly prevented millions of fractures world-wide.


Subject(s)
Alendronate , Osteoporosis, Postmenopausal , Aged , Alendronate/adverse effects , Bone Density , Bone Remodeling , Female , Humans , Medicare , United States
9.
Bone ; 137: 115390, 2020 08.
Article in English | MEDLINE | ID: mdl-32353565

ABSTRACT

Zoledronate is the most potent and most long-acting bisphosphonate in clinical use, and is administered as an intravenous infusion. Its major uses are in osteoporosis, Paget's disease, and in myeloma and cancers to reduce adverse skeletal related events (SREs). In benign disease, it is a first- or second-line treatment for osteoporosis, achieving anti-fracture efficacy comparable to that of the RANKL blocker, denosumab, over 3 years, and it reduces fracture risk in osteopenic older women. It is the preferred treatment for Paget's disease, achieving higher rates of remissions which are much more prolonged than with any other agent. Some trials have suggested that it reduces mortality, cardiovascular disease and cancer, but these findings are not consistent across all studies. It is nephrotoxic, so should not be given to those with significant renal impairment, and, like other potent anti-resorptive agents, can cause hypocalcemia in patients with severe vitamin D deficiency, which should be corrected before administration. Its most common adverse effect is the acute phase response, seen in 30-40% of patients after their first dose, and much less commonly subsequently. Clinical trials in osteoporosis have not demonstrated increases in osteonecrosis of the jaw or in atypical femoral fractures. Observational databases are currently inadequate to determine whether these problems are increased in zoledronate users. Now available as a generic, zoledronate is a cost-effective agent for fracture prevention and for management of Paget's disease, but wider provision of infusion facilities is important to increase patient access. There is a need to further explore its potential for reducing cancer, cardiovascular disease and mortality, since these effects could be substantially more important than its skeletal actions.


Subject(s)
Bone Density Conservation Agents , Osteitis Deformans , Osteoporosis , Aged , Bone Density Conservation Agents/adverse effects , Diphosphonates/adverse effects , Female , Humans , Osteitis Deformans/drug therapy , Zoledronic Acid/therapeutic use
10.
Sci Rep ; 10(1): 7408, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32366894

ABSTRACT

ANKH mutations are associated with calcium pyrophosphate deposition disease and craniometaphyseal dysplasia. This study investigated the effects of these ANKH mutants on cellular localisation and associated biochemistry. We generated four ANKH overexpression-plasmids containing either calcium pyrophosphate deposition disease or craniometaphyseal dysplasia linked mutations: P5L, E490del and S375del, G389R. They were transfected into CH-8 articular chondrocytes and HEK293 cells. The ANKH mutants dynamic differential localisations were imaged and we investigated the interactions with the autophagy marker LC3. Extracellular inorganic pyrophosphate, mineralization, ENPP1 activity expression of ENPP1, TNAP and PIT-1 were measured. P5L delayed cell membrane localisation but once recruited into the membrane it increased extracellular inorganic pyrophosphate, mineralization, and ENPP1 activity. E490del remained mostly cytoplasmic, forming punctate co-localisations with LC3, increased mineralization, ENPP1 and ENPP1 activity with an initial but unsustained increase in TNAP and PIT-1. S375del trended to decrease extracellular inorganic pyrophosphate, increase mineralization. G389R delayed cell membrane localisation, trended to decrease extracellular inorganic pyrophosphate, increased mineralization and co-localised with LC3. Our results demonstrate a link between pathological localisation of ANKH mutants with different degrees in mineralization. Furthermore, mutant ANKH functions are related to synthesis of defective proteins, inorganic pyrophosphate transport, ENPP1 activity and expression of ENPP1, TNAP and PIT-1.


Subject(s)
Bone Diseases, Developmental/genetics , Chondrocalcinosis/genetics , Craniofacial Abnormalities/genetics , Hyperostosis/genetics , Hypertelorism/genetics , Mutation , Phosphate Transport Proteins/genetics , Alkaline Phosphatase , Autophagy , Bone Diseases, Developmental/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chondrocalcinosis/metabolism , Chondrocytes/metabolism , Craniofacial Abnormalities/metabolism , Diphosphates/metabolism , HEK293 Cells , Humans , Hyperostosis/metabolism , Hypertelorism/metabolism , Microscopy, Confocal , Phosphate Transport Proteins/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Protein Domains , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Transcription Factor Pit-1/genetics , Transcription Factor Pit-1/metabolism
11.
BMJ Open ; 9(9): e030689, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31488492

ABSTRACT

INTRODUCTION: Paget's disease of bone (PDB) is characterised by increased and disorganised bone remodelling affecting one or more skeletal sites. Complications include bone pain, deformity, deafness and pathological fractures. Mutations in sequestosome-1 (SQSTM1) are strongly associated with the development of PDB. Bisphosphonate therapy can improve bone pain in PDB, but there is no evidence that treatment alters the natural history of PDB or prevents complications. The Zoledronate in the Prevention of Paget's disease trial (ZiPP) will determine if prophylactic therapy with the bisphosphonate zoledronic acid (ZA) can delay or prevent the development of PDB in people who carry SQSTM1 mutations. METHODS AND ANALYSIS: People with a family history of PDB aged >30 years who test positive for SQSTM1 mutations are eligible to take part. At the baseline visit, participants will be screened for the presence of bone lesions by radionuclide bone scan. Biochemical markers of bone turnover will be measured and questionnaires completed to assess pain, health-related quality of life (HRQoL), anxiety and depression. Participants will be randomised to receive a single intravenous infusion of 5 mg ZA or placebo and followed up annually for between 4 and 8 years at which point baseline assessments will be repeated. The primary endpoint will be new bone lesions assessed by radionuclide bone scan. Secondary endpoints will include changes in biochemical markers of bone turnover, pain, HRQoL, anxiety, depression and PDB-related skeletal events. ETHICS AND DISSEMINATION: The study was approved by the Fife and Forth Valley Research Ethics Committee on 22 December 2008 (08/S0501/84). Following completion of the trial, a manuscript will be submitted to a peer-reviewed journal. The results of this trial will inform clinical practice by determining if early intervention with ZA in presymptomatic individuals with SQSTM1 mutations can prevent or slow the development of bone lesions with an adverse event profile that is acceptable. TRIAL REGISTRATION NUMBER: ISRCTN11616770.


Subject(s)
Bone Density Conservation Agents/therapeutic use , Osteitis Deformans/genetics , Osteitis Deformans/prevention & control , Sequestosome-1 Protein/genetics , Zoledronic Acid/therapeutic use , Adult , Anxiety/etiology , Depression/etiology , Genetic Testing , Humans , Musculoskeletal Pain/etiology , Mutation , Osteitis Deformans/complications , Osteitis Deformans/diagnostic imaging , Quality of Life , Radionuclide Imaging , Randomized Controlled Trials as Topic
12.
J Bone Miner Res ; 34(4): 579-604, 2019 04.
Article in English | MEDLINE | ID: mdl-30803025

ABSTRACT

An evidence-based clinical guideline for the diagnosis and management of Paget's disease of bone (PDB) was developed using GRADE methodology, by a Guideline Development Group (GDG) led by the Paget's Association (UK). A systematic review of diagnostic tests and pharmacological and nonpharmacological treatment options was conducted that sought to address several key questions of clinical relevance. Twelve recommendations and five conditional recommendations were made, but there was insufficient evidence to address eight of the questions posed. The following recommendations were identified as the most important: 1) Radionuclide bone scans, in addition to targeted radiographs, are recommended as a means of fully and accurately defining the extent of metabolically active disease in patients with PDB. 2) Serum total alkaline phosphatase (ALP) is recommended as a first-line biochemical screening test in combination with liver function tests in screening for the presence of metabolically active PDB. 3) Bisphosphonates are recommended for the treatment of bone pain associated with PDB. Zoledronic acid is recommended as the bisphosphonate most likely to give a favorable pain response. 4) Treatment aimed at improving symptoms is recommended over a treat-to-target strategy aimed at normalizing total ALP in PDB. 5) Total hip or knee replacements are recommended for patients with PDB who develop osteoarthritis in whom medical treatment is inadequate. There is insufficient information to recommend one type of surgical approach over another. The guideline was endorsed by the European Calcified Tissues Society, the International Osteoporosis Foundation, the American Society of Bone and Mineral Research, the Bone Research Society (UK), and the British Geriatric Society. The GDG noted that there had been a lack of research on patient-focused clinical outcomes in PDB and identified several areas where further research was needed. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.


Subject(s)
Alkaline Phosphatase/blood , Osteitis Deformans , Zoledronic Acid/therapeutic use , Adult , Biomarkers/blood , Humans , Osteitis Deformans/blood , Osteitis Deformans/diagnosis , Osteitis Deformans/drug therapy , Practice Guidelines as Topic
13.
Br J Clin Pharmacol ; 85(6): 1052-1062, 2019 06.
Article in English | MEDLINE | ID: mdl-30650219

ABSTRACT

The biological effects of the bisphosphonates (BPs) as inhibitors of calcification and bone resorption were first described in the late 1960s. In the 50 years that have elapsed since then, the BPs have become the leading drugs for the treatment of skeletal disorders characterized by increased bone resorption, including Paget's disease of bone, bone metastases, multiple myeloma, osteoporosis and several childhood inherited disorders. The discovery and development of the BPs as a major class of drugs for the treatment of bone diseases is a paradigm for the successful journey from "bench to bedside and back again". Several of the leading BPs achieved "blockbuster" status as branded drugs. However, these BPs have now come to the end of their patent life, making them highly affordable. The opportunity for new clinical applications for BPs also exists in other areas of medicine such as ageing, cardiovascular disease and radiation protection. Their use as inexpensive generic medicines is therefore likely to continue for many years to come. Fifty years of research into the pharmacology of bisphosphonates have led to a fairly good understanding about how these drugs work and how they can be used safely in patients with metabolic bone diseases. However, while we seemingly know much about these drugs, a number of key aspects related to BP distribution and action remain incompletely understood. This review summarizes the existing knowledge of the (pre)clinical and translational pharmacology of BPs, and highlights areas in which understanding is lacking.


Subject(s)
Bone Density Conservation Agents/therapeutic use , Bone Diseases, Metabolic/drug therapy , Bone Remodeling/drug effects , Diphosphonates/therapeutic use , Animals , Bone Density Conservation Agents/adverse effects , Bone Density Conservation Agents/pharmacokinetics , Bone Diseases, Metabolic/diagnosis , Bone Diseases, Metabolic/epidemiology , Bone Diseases, Metabolic/physiopathology , Diphosphonates/adverse effects , Diphosphonates/pharmacokinetics , Humans , Risk Factors , Treatment Outcome
14.
J Bone Miner Res ; 32(9): 1860-1869, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28337806

ABSTRACT

Bisphosphonates are widely used in the treatment of clinical disorders characterized by increased bone resorption, including osteoporosis, Paget's disease, and the skeletal complications of malignancy. The antiresorptive potency of the nitrogen-containing bisphosphonates on bone in vivo is now recognized to depend upon two key properties, namely mineral binding affinity and inhibitory activity on farnesyl pyrophosphate synthase (FPPS), and these properties vary independently of each other in individual bisphosphonates. The better understanding of structure activity relationships among the bisphosphonates has enabled us to design a series of novel bisphosphonates with a range of mineral binding properties and antiresorptive potencies. Among these is a highly potent bisphosphonate, 1-fluoro-2-(imidazo-[1,2 alpha]pyridin-3-yl)-ethyl-bisphosphonate, also known as OX14, which is a strong inhibitor of FPPS, but has lower binding affinity for bone mineral than most of the commonly studied bisphosphonates. The aim of this work was to characterize OX14 pharmacologically in relation to several of the bisphosphonates currently used clinically. When OX14 was compared to zoledronate (ZOL), risedronate (RIS), and minodronate (MIN), it was as potent at inhibiting FPPS in vitro but had significantly lower binding affinity to hydroxyapatite (HAP) columns than ALN, ZOL, RIS, and MIN. When injected i.v. into growing Sprague Dawley rats, OX14 was excreted into the urine to a greater extent than the other bisphosphonates, indicating reduced short-term skeletal uptake and retention. In studies in both Sprague Dawley rats and C57BL/6J mice, OX14 inhibited bone resorption, with an antiresorptive potency equivalent to or greater than the comparator bisphosphonates. In the JJN3-NSG murine model of myeloma-induced bone disease, OX14 significantly prevented the formation of osteolytic lesions (p < 0.05). In summary, OX14 is a new, highly potent bisphosphonate with lower bone binding affinity than other clinically relevant bisphosphonates. This renders OX14 an interesting potential candidate for further development for its potential skeletal and nonskeletal benefits. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Diphosphonates/pharmacology , Diphosphonates/pharmacokinetics , Animals , Cell Line, Tumor , Female , Humans , Mice , Middle Aged , Rats , Rats, Sprague-Dawley
15.
J Med Chem ; 60(6): 2326-2343, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28121436

ABSTRACT

Osteomyelitis is a major problem worldwide and is devastating due to the potential for limb-threatening sequelae and mortality. Osteomyelitis pathogens are bone-attached biofilms, making antibiotic delivery challenging. Here we describe a novel osteoadsorptive bisphosphonate-ciprofloxacin conjugate (BV600022), utilizing a "target and release" chemical strategy, which demonstrated a significantly enhanced therapeutic index versus ciprofloxacin for the treatment of osteomyelitis in vivo. In vitro antimicrobial susceptibility testing of the conjugate against common osteomyelitis pathogens revealed an effective bactericidal profile and sustained release of the parent antibiotic over time. Efficacy and safety were demonstrated in an animal model of periprosthetic osteomyelitis, where a single dose of 10 mg/kg (15.6 µmol/kg) conjugate reduced the bacterial load by 99% and demonstrated nearly an order of magnitude greater activity than the parent antibiotic ciprofloxacin (30 mg/kg, 90.6 µmol/kg) given in multiple doses. Conjugates incorporating a bisphosphonate and an antibiotic for bone-targeted delivery to treat osteomyelitis biofilm pathogens constitute a promising approach to providing high bone-antimicrobial potency while minimizing systemic exposure.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Ciprofloxacin/analogs & derivatives , Ciprofloxacin/therapeutic use , Diphosphonates/chemistry , Diphosphonates/therapeutic use , Osteomyelitis/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Biofilms/drug effects , Bone and Bones/drug effects , Bone and Bones/microbiology , Ciprofloxacin/pharmacology , Diphosphonates/pharmacology , Drug Design , Female , Osteomyelitis/microbiology , Rats, Sprague-Dawley , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
16.
Curr Opin Pharmacol ; 28: 57-68, 2016 06.
Article in English | MEDLINE | ID: mdl-27061894

ABSTRACT

Inorganic pyrophosphate has long been known as a by-product of many intracellular biosynthetic reactions, and was first identified as a key endogenous inhibitor of biomineralisation in the 1960s. The major source of pyrophosphate appears to be extracellular ATP, which is released from cells in a controlled manner. Once released, ATP can be rapidly hydrolysed by ecto-nucleotide pyrophosphatase/phosphodiesterases to produce pyrophosphate. The main action of pyrophosphate is to directly inhibit hydroxyapatite formation thereby acting as a physiological 'water-softener'. Evidence suggests pyrophosphate may also act as a signalling molecule to influence gene expression and regulate its own production and breakdown. This review will summarise our current understanding of pyrophosphate metabolism and how it regulates bone mineralisation and prevents harmful soft tissue calcification.


Subject(s)
Calcification, Physiologic/physiology , Calcinosis/pathology , Diphosphates/metabolism , Adenosine Triphosphate/metabolism , Animals , Gene Expression Regulation/physiology , Humans , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism , Signal Transduction/physiology
17.
Stem Cells ; 34(3): 756-67, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26679354

ABSTRACT

Mesenchymal stem cells (MSCs) undergo a decline in function following ex vivo expansion and exposure to irradiation. This has been associated with accumulation of DNA damage and has important implications for tissue engineering approaches or in patients receiving radiotherapy. Therefore, interventions, which limit accumulation of DNA damage in MSC, are of clinical significance. We were intrigued by findings showing that zoledronate (ZOL), an anti-resorptive nitrogen containing bisphosphonate, significantly extended survival in patients affected by osteoporosis. The effect was too large to be simply due to the prevention of fractures. Moreover, in combination with statins, it extended the lifespan in a mouse model of Hutchinson Gilford Progeria Syndrome. Therefore, we asked whether ZOL was able to extend the lifespan of human MSC and whether this was due to reduced accumulation of DNA damage, one of the important mechanisms of aging. Here, we show that this was the case both following expansion and irradiation, preserving their ability to proliferate and differentiate in vitro. In addition, administration of ZOL before irradiation protected the survival of mesenchymal progenitors in mice. Through mechanistic studies, we were able to show that inhibition of mTOR signaling, a pathway involved in longevity and cancer, was responsible for these effects. Our data open up new opportunities to protect MSC from the side effects of radiotherapy in cancer patients and during ex vivo expansion for regenerative medicine approaches. Given that ZOL is already in clinical use with a good safety profile, these opportunities can be readily translated for patient benefit.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Diphosphonates/administration & dosage , Imidazoles/administration & dosage , Mesenchymal Stem Cells/drug effects , Animals , Cell Survival/drug effects , DNA Damage/radiation effects , Humans , Mesenchymal Stem Cells/radiation effects , Mice , Radiation , Regenerative Medicine , Signal Transduction/drug effects , Zoledronic Acid
18.
Bioconjug Chem ; 27(2): 329-40, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26646666

ABSTRACT

A bone imaging toolkit of 21 fluorescent probes with variable spectroscopic properties, bone mineral binding affinities, and antiprenylation activities has been created, including a novel linking strategy. The linking chemistry allows attachment of a diverse selection of dyes fluorescent in the visible to near-infrared range to any of the three clinically important heterocyclic bisphosphonate bone drugs (risedronate, zoledronate, and minodronate or their analogues). The resultant suite of conjugates offers multiple options to "mix and match" parent drug structure, fluorescence emission wavelength, relative bone affinity, and presence or absence of antiprenylation activity, for bone-related imaging applications.


Subject(s)
Bone Diseases/diagnosis , Bone and Bones/pathology , Diphosphonates/chemistry , Fluorescent Dyes/chemistry , Optical Imaging/methods , Animals , Cell Line , Humans , Male , Rats, Sprague-Dawley
19.
Bone ; 81: 478-486, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26318908

ABSTRACT

Farnesyl pyrophosphate synthase (FPPS) is the major molecular target of nitrogen-containing bisphosphonates (N-BPs), used clinically as bone resorption inhibitors. We investigated the role of threonine 201 (Thr201) and tyrosine 204 (Tyr204) residues in substrate binding, catalysis and inhibition by N-BPs, employing kinetic and crystallographic studies of mutated FPPS proteins. Mutants of Thr201 illustrated the importance of the methyl group in aiding the formation of the Isopentenyl pyrophosphate (IPP) binding site, while Tyr204 mutations revealed the unknown role of this residue in both catalysis and IPP binding. The interaction between Thr201 and the side chain nitrogen of N-BP was shown to be important for tight binding inhibition by zoledronate (ZOL) and risedronate (RIS), although RIS was also still capable of interacting with the main-chain carbonyl of Lys200. The interaction of RIS with the phenyl ring of Tyr204 proved essential for the maintenance of the isomerized enzyme-inhibitor complex. Studies with conformationally restricted analogues of RIS reaffirmed the importance of Thr201 in the formation of hydrogen bonds with N-BPs. In conclusion we have identified new features of FPPS inhibition by N-BPs and revealed unknown roles of the active site residues in catalysis and substrate binding.


Subject(s)
Diphosphonates/chemistry , Geranyltranstransferase/antagonists & inhibitors , Mutation , Nitrogen/chemistry , Bone Density Conservation Agents/therapeutic use , Catalysis , Catalytic Domain , Crystallization , Diphosphonates/therapeutic use , Drug Evaluation, Preclinical , Geranyltranstransferase/chemistry , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Imidazoles/therapeutic use , Inhibitory Concentration 50 , Molecular Conformation , Oligonucleotides/chemistry , Protein Binding , Recombinant Proteins/chemistry , Threonine/chemistry , Tyrosine/chemistry , Zoledronic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...